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5.6. 1 Forward Contracts

Let S(t), 0 < t < T, be an asset price process, and let R(t), 0 <t < T, be
an interest rate process. We choose here some large time T, and all bonds
and derivative securities we consider will mature or explre at or before time
T. As usual, we define the discount process D(t) = e~ Jo R(u)du According to
the risk-neutral pricing formula (5.2.30), the price at time ¢ of a zero-coupon
bond paying 1 at time T is

B(t,T) = Dt ED(T)IF®), 0<t<T<T (5.6.1)
D(t)V(t) = E[D( T)@I}' ()], 0<t<T. (5.2.30)

V(T) represents the payoft at tlme T of a derivative security.



Definition 5.6.1

« Aforward contract is an agreement to pay a specified delivery
price K at a delivery date T, where 0<7 <7 forthe asset , i’
whose price at time t is S(t). The T-forward price Fory(t,T) of "=
this asset at time t where 0 </ <7 <T is the value of K that "
makes the forward contract have no-arbitrage price zero at
time t.

Theorem 5.6.2. RN
» Assume that zero-coupon bonds of all maturities can
be traded. Then
S(t)
B(t,T)’

Forg(t,T) = 0<t<T<T. (5.6.2)



PROOF: Suppose that at time ¢ an agent sells the forward contract with deliv-
ery date T and delivery price K. Suppose further that the value K is chosen
so that the forward contract has price zero at time £. Then selling the forward
contract generates no income. Having sold the forward contract at time ¢,

suppose the agent immediately shorts %% zero-coupon bonds and uses the

income S(t) generated to buy one share of the asset. The agent then does no

further trading until time 7', at which time she owns one share of the asset,
which she delivers according to the forward contract. In exchange, she receives

£ After covering the short bond position, she is left with K — B_(t(_'-ll‘i If this

is positive, the agent has found an arbitrage.
In order to preclude arbitrage, K must be given by (5.6.2).

Forg(t,T) = B‘?ft;), 0<t<T<T (5.6.2)




Remark 5. 6. 3.

* The forward price must be given by (5.6.2) in order to preclude
arbitrage. Because we have assumed the existence of a risk-neutral
measure and are pricing all assets by the risk-neutral pricing
formula,we must be able to obtain (5.6.2) from the risk-neutral
pricing formula as well. We compute the price at time t of the forward

contract to be
risk-neutral pricing formula %]E[D(T) (S(T) - K) |.7: (t)]

D(t)V(t) = E[D(T)V(T)|F(¢)] K

D( IE[D T)|.7-‘(t)]—D—(51E[D(T)|f(t)]

- 1
sp) | =IR-KBET) B(t,T) = 5 EID(DIF()
In order for this to be zero, K must be given by (5.6.2).

Fors(t,T) =




5.6.2 Futures Contracts

» Consider a time interval [0, T], which we divide into
subintervals using the partition points 0= %o <t <..<i, =7

We shall refer to each subinterval [ 7.7, .,) as a “"day.”

» suppose the interest rate is constant within each day.
Then the discount process is given by D(0)=1 and, for
k=0,1,...,n-1,

D(t) s Js R(u)du

[ A -
D(Z‘Aﬂrl) =CXP {_L (ll)dll eXp ZR j+l [j)}ﬂ

j=0

which is F, )-measurable.



According to the risk-neutral pricing formula

(5.6.1), the zero-coupon bond paying 1 at
maturity T has time- 1, price

B(tx,T) = 3755 EID(D)|F (1)

B(T) = 5 EID(T)IF()

An asset whose price at time t is S(t) has
time- 7, forward price S(t)

, B(t,T)
S(,)
BTy 563

Fors(t,T) =

For (¢, ,1") =

an rF(,)-measurable quantity.



Suppose we take a long position in the forward contract

at time t, (i.e., agree to receive S(T') and pay Forg(tx,T") at

time T'). The value of this position at time ¢; > tx is

Et 1 TE (=l 1

Vi = D(t;)

ERMEREVLEALY

~ D(t))

= 5(t;) — S(tx) -

D(t)V(t) = E[D(T)V(T)|F(t)]

E[D(T)S(T)|F(t;)] -
B(t;, T)

(tk) 1

IE[D(T)(S(T)— e tk) |f ] POVE) = ED@IFe)]

Forg(t,T') =

B(t,T)

B(tx,T) D(t;)

E[D(T)|F(t;)]

B(tkaT)-

B(t,T) =

1 ~
WE[D(T)U:(L‘)]




B PR TR
1
D(t;)

= S(t;) — S(tx) - gg::gj& :

EID(T)SMIFE)] - o - 5y EDDIF()

S(tj) - S(tj)
If t; = tx, this is zero, as it should be. However, for t; > tx, it is generally

different from zero. For example, if the interest rate is a constant r so that
B(t,T) = e "(T~%) then
B(t,T) = E%E[D(f)'ﬂt” Vi,j = S(t;) — e" Bt G (1),

e—rt e—rT

o—T(T—t)) y o (T—tk)




To alleviate the problem of default risk, parties to a forward contract
could agree to settle one day after the contract is entered. The original
forward contract purchaser could then seek to purchase a new forward
contract one day later than the initial purchase. By repeating this process,
the forward contract purchaser could generate the cash flow

g e
Vii'= S(t;) — S(tx) - (¢, T)

e Easney B(te, T).
Vo, =S@@)—S(,)- gg;;; =S5@)—-S5(@,)- IZY(‘) ;; :
V., =80,)—S)- ?&;;
B(t,, T)=1 S, )

ST— |
B(,H—l ’T) - B(’n—l’T)

V. ln ‘S'(’n ) o AS'(’n—l) )

=




Problems

* The purchaser of the forward contract was presumably motivated by
a desire to hedge against a price increase in the underlying asset. It is
not clear the extent to which receiving this cash flow provides such a
hedge.

* This daily buying and selling of forward contracts requires that there
be a liguid market each day for forward contracts initiated that day
and forward contracts initiated one day before.



IR H B THVEH St (ERS

A better idea th?ﬂ daily repurchase of forward contracts is to create a
futures price Futg(t,T), and use it as described below. If an agent holds a
long futures position between times tx and tx+1, then at time £x4; he receives
a payment

Futg(tk+1,T) — Futg(tk, T). | marking to margin

Futg(t,T) is F(t)-measurable for every ¢t and
Futs(T,T) = S(T).



* The sum of payments received by an agent
who purchases a futures contract at time zero
and holds it until delivery date T is

g@%ﬁﬂ:wmwnwgyyﬂﬁigwﬁ6+~

g Bt T)— sz = (Fut (T, T)— Fut (0,T))

Futs(T,T) = S(T)

= S(T)— Fut (0,T).

at time £y he receives Futg(txy1,T) — Futs(te, T)




If the agent takes delivery of the asset at time T, paying market price S(T)
for it. Ignoring the time value of money, he has effectively paid the price
Futs(0, T) for the asset, a price that was locked in at time zero.

S(T)— Fut,(0,7)  -S(T)+5(T)- Futs(0, T) =- Futs(0, T)




* In addition to satisfying Futs(T, T) = S(T), the futures price process is
chosen so that at each time t, the value of the payment to be
received at time t,,;, and indeed at all future times t, > t,, is zero.

* This means that at any time one may enter or close out a position in

the contract without incurring any cost other than payments already
made.



* The condition that the value at time t, of the payment to be received
at time t,, be zero may be written as

D(t)V(t) = E[D(T)V(T)|F (t)]
0 = D(tk)E[D(tkH)(Futs(tm,T) Futs(tx, T)) | F (tk)]
_ D(tg+1)

{E[Futs(te+1, T)|F(t)] — Futs(te, T)},

D(tx)

D(tx41) is F(tx)-measurable




_ D(tg+1)

D (EIFuts (tess, TF (1)) - Futs (t, T)}

0

* From the equation above, we see that
E[Futs(tkr1, T)|F(tk)] = Futg(te, T), k=0,1,...,n — 1. (5.6.4)

This shows that Futg(tx,T') must be a discrete-time martingale under P.

e But we also require that Futs(T, T) = S(T), from which we
conclude that the futures prices must be given by the formula

Futg(te, T) = E[S(T)|F(tx)], k =0,1,...,n. (5.6.5)

gt

E[S(T)|F(t)]= E[ Futs(T, T)|F(tx)] = Puts(tx, T)




The value at time t, of the payment to be received at time t; is zero
forevery j > k+1.

D(t)V(t) = E[D(T)V(T)|F(t)]
1 ~
E t;)(Fatg(t; — —
(Iterated conditioning) D(tk) [D( J)( S( J,T) thS(tJ I,T))‘f(tk)]
E[E[X|G]|H] = E[X|#] 1 ==
2320 = B E|E [D(t;) (Futs(tj, T) — Futs(tj—1,T))|F(tj-1)] |f(tk)]
1 ~ ~
- - (tk)n:«f (t;)E[Futs(t;, T)|F(t;—1)] — D(t;)Futs(t;_ 1T)|f te)|
F(tj_1)-measurability of D(t;) 1 ~
= B[t Ruts (e, Mﬂﬂu

the martingale property for Futg(t,T)




Definition 5.6.4. The futures price of an asset whose value at time T is S(T')
is given by the formula Futs(T,T) = S(T)

Futg(t, T) = E[S(T)|F(t)], 0<t<T. (5.6.6)

\

Theorem 5.6.5. The futures price is a martingale under the risk-neutral
measure P, it satisfies Futs(T,T) = S(T'), and the value of a long (or a
short) futures position to be held over an interval of time is always zero.

T E




If the filtration F(t), 0 < t < T, is generated by a Brownian motion W (t),
0 <t <T, then Corollary 5.3.2 of the Martingale Representation Theorem

implies 'that

t ——
Futs(t,T) = Futg(0,T) + / Muw)dW(u), 0<t<T,
0

e ——

for some adapted integrand process I (i.e., dFuts(t,T) = I'(t) dW(t)).

Corollary 5.3.2.
Now let M(t), 0 < t < T, be a martingale under P. Then there is an
adapted process I'(u), 0 < u < T, such that

e

M(t) = M(O) + ]Ot I'(u) dW(u), 0<t<T. (5.3.2)




Let 0 < to < t; < T be given and consider an agent who at times ¢ between

times to and t; holds A(t) futures contracts. It costs nothing to change the
position in futures contracts, but because the futures contracts generate cash

flow, the agent may have cash to invest or need to borrow in order to execute
this strategy. He does this investing and/or borrowing at the interest rate R(t)
prevailing at the time of the investing or borrowing. The agent’s profit X (¢)

from this trading satisfies

Capital gain on the futures position

dX (t) = A(t) dFuts(t, T) + R(t) X (t) dt = A@)T(t) dW () + R(t) X (t) dt,

nterest earings on the cash position

dFutg(t,T) = I'(t)dW(¢t)
d(D(t)X(t)) = D(t)A(t)T(t) dW (t).

D(t)dX(t)+dD(t)X(t)+dD(t)dX(t) (5.2.18)

=D(t) A(t)T(t) dW (1) JWWO dD(t) = —R(t)D(t) dt.

and thus




d(D(t)X(t)) = D(t)A(t)T(t) dW ().

Assume that at time ¢y the agent’s profit is X (tg) = 0. At time ¢;, the agent’s
profit X (¢,) will satisfy

D(t)X(t:) = [ D(w)A(w) () dW (w). (5.6.7)

to

D(t,)X(t,)=0




Dt)X(t) = [ D(u)Aw)F(w) dW(u).

to

Because It0 integrals are martingales, we have

E[D(t1) X (t1)|F (to)]
—E / 1 D(u)A(w) I (v) dW(u) _ [ D(u)A(u)l:(u) dW () -7'—(150)]
L Jo ~Jo .
=K Al D(u)A(u)T W(u) f(tg)J —/0 D(u)A(u)T W (u)
=0. ! martingale | (5.6.8)
/ D(u) A(u)I(u) dW ()




risk-neutral pricing formula

D(t)V (t) —]E[D T)|F(t)]

According to the risk-neutral pricing formula, the value at time ¢ of a payment
of X(t,) at time ¢, is WIE[D(tl X (t1)|F(to)], and we have just shown that

this i1s zero.

E[D(t1) X (t1)|F(to)] = 0




dX(t) = A(t) dFuts(t, T) + R(t) X (t) dt
d(D(6)X () = D(t)dX(t)+dD(t)X(t)+dD(t)dX(t)

=D(t)A(t) dhts(t,T)W+o

dD(t) = —R(t)D(t) dt (5.2.18)

If the filtration F(t), 0 < t < T, is not generated by a Brownian motion,
so that we cannot use Corollary 5.3.2, then we must write (5.6.7) as

D(t)X(t,) = | D(u)A(w)dFuts(u, T). (5.6.9)

to

D(to)x(to)=0

=R

martingale

D(t1) X (t1)|F (t0)] = 0.

D(t,)X(t,)=0




Forwards

1
D() E[D(T)(S(T) - K)|F(t)]
K
= B )IE[D (T)S(T)|F(t)] - Dt )IE[D(T)If(t)]

= S(t) — KB(t,T).

=0

Futures
0= 5z k)E[D(tkH)(Futs(tm,T) Futs(t, T)) | F (te)]

_ D(tk+1)

{E[Futs(tks1, T)|F(tr)] — Futs(te, T)},

~ D(t)



Remark 5.6.6 ( Risk-neutral valuation of a cash flow). Suppose an asset gen-
erates a cash flow so that between times 0 and u a total of C'(u) is paid,

where C(u) is F(u)-measurable. Then a portfolio that begins with one share
of this asset at time ¢ and holds this asset between times ¢ and T, investing

or borrowing at the interest rate R as necessary, satisfies

Capital gain on the asset position

X(u):profit dX(u) = dC(u) + R(u)X (u) du,

Interest earings on the cash position

or equivalently

d(D(u)X(u)) = D(u)dC(u).

D(u)dX(u)+dD(u)X(u)+dD(u)dX(u)
=D(u) dC(u) +W+O

D(t) = e~ Jo Rw)dv  gD(4) = —R(¢)D(t) dt.




d(D(u)X (u)) = D(u) dC(u).

Suppose X (t) = 0. Then integration shows that

D(T)X(T) = / D(w) dC(u).
D(t)X(t)=0

The risk-neutral value at time t of X(T'), which is the risk-neutral value at

time ¢ of the fash flow received between times t and T;is thus

D( ]E[D(T)X(T) f(t)] =D() U D(u) dC/(u) ()], 0<t<T

(5.6.10)

D(t)V (t) = E[D(T)V(T)|F(t)]




f(t)‘ 0<t<T.

Pl OO e

D(t)V(t) = E[D(T)V(T)|F(t)]

(5.6.10)

Formula (5.6.10) generalizes the risk-neutral pricing formula (5.2.30) to allow
for a cash flow rather than payment at the single time T. In (5.6.10), the
process C'(u) can represent a succession of lump sum payments A, Az, ..., A,
at times t; < to < --- < t,, where each A; is an F(t;)-measurable random

variable. The formula for this is

— Z Ai]I[O,u](t )
1=1



Clu) =) Alju(t:).
i=1

T

T
/t D(’M) dC(’Ul) = Z D(ti)A,;I[(t‘T] (ti).

1=1

Only payments made strictly later than time £ appear in this sum. Equation
(5.6.10) says that the value at time ¢ of the string of payments to be made
strictly later than time ¢ is

q

1 ~ |« n 1 .
WE [;D(ti)Ail(t,T] (t)| F(t)| = ZI[(t,T](ti)mE[D(ti)Ailf(t)],

- 1=1

which is the sum of the time-t values of the payments made strictly later than

time t. 1 ~

-’Fit}] _ ﬁfﬁ: [[ﬁ D(u) dC (u)

.?-'(t)‘, 0<t<T.

(5.6.10)




5.6.3 Forward—Futures Spread

~S(t) B(1,T) = ——E[D(T)|F ()]
Forg(t,T) = Bt T) ?(t) |
—~ -1t —1rT
Futg(t, T) = E[S(T)|F(t)]. € €

If the interest rate is a constant r, then B(t,T) = e~ "(T—t) gand

Fors(t,T) = e"T~5(2), D(t)V () = E[D(T)V(T)| F(t)]
Futs(t,T) = e TE[e "TS(T)|F(t)] = eTe™S(t) = e T-15(2).
D(T) D(t)

In this case, the forward and futures prices agree.



We compare Forg(0,T) q,“nd Futg(0,T) in the case of a random interest

Fate. In this case, B(0,T) = ED(T), and the so-called forward—futures spread
n Forg(t,T) = S(t) ;
Fors(0,T) — Futs(0,T) = ..m — fEES’(T) B(.T)
]ED(T) Futg(t,T) = E[S(T)If(t)].
— _ED(T)-ES(T
= ( {E[D (T)) - ED(T) - ES(T)}
= - (01, 75 Cov(D(T), S(T)), (5.6.11)

where EEV(D(T), S(T)) denotes the covariance of D(T) and S(T) under the
risk-neutral measure. If the interest rate is nonrandom, this covariance is zero
and the futures price agrees with the forward price.



